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1 Introduction

This paper proposes a model of asset returns that draws from the existing liter-

ature on autoregressive stochastic volatility models and the recent advances made

in Bayesian nonparametric models and their sampling to create a semiparametric

stochastic volatility model of returns. By applying both parametric and nonpara-

metric features to the return process, an estimable stochastic volatility model with a

flexible nonparametric innovation distribution is provided. The nonparametric por-

tion of the model consists of an infinitely ordered mixture of normal distributions

whose mixture probabilities, means, variances, and most importantly, number of

mixtures, are distributed according to a particular Bayesian prior. With this non-

parametric representation of the conditional distribution of returns, the predictive

density from the model is able to fit both the high level of kurtosis and negative

skewness not currently captured with parametric stochastic volatility models. Our

approach is likelihood based and provides exact finite sample inference, including a

full characterization of parametric and distributional uncertainty.

There exists a long history of modeling asset returns with a mixture of normals

(see Press (1967); Praetz (1972); Clark (1973); Gonedes (1974); Kon (1984)). The

general makeup of these models consist of an infinite mixture of normal distributions

with their means fixed to zero and their variances independently and identically

distributed (iid) over some pre-specified distribution. It is well known that mixture

models produce fat-tailed behavior, in other words, levels of kurtosis in excess of nor-

mality. However, mixture models alone do not capture the strong level of empirical

persistence observed in the conditional variance of returns.

Stochastic volatility models (SV) are designed to fit this time-varying behav-

ior in the conditional variance of returns (see Taylor (1986); Harvey et al. (1994)).

Like its nonparametric mixture predecessors, stochastic volatility models are a con-

tinuous mixture of normals, however, their variance follows a dynamic stochastic

process. This stochastic behavior enables the SV model to produce both the high

levels of kurtosis and the persistence found in the conditional variances of returns.

Unfortunately, parametric SV models have not fully captured the asymmetries and
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leptokurtotic behavior present in return data (see Gallant et al. (1997); Mahieu &

Schotman (1998), and Durham (2006)). For example, a SV model with a standard

normal distribution (SV-N) cannot fit the skewness in returns since its distribution

is symmetrical. Furthermore, by its parametric nature the SV-N model is restricted

in the level of kurtosis it can produce (see Liesenfeld & Jung (2000) and Meddahi

(2001)). Skewness and kurtosis are important distributional features that play an

important role in the pricing of derivatives, the measuring of risk, and the selection

of a portfolio. A flexible nonparametric version of the SV model will be useful to

risk managers and analysts.

The Dirichlet process mixture (DPM) prior consists of modeling the clusters and

probabilities of an infinite ordered mixture model with the Dirichlet process prior of

Ferguson (1973). As a Bayesian nonparametric estimator of a unknown distribution,

the DPM offers a number of attractive features; i) the DPM is a basis function

spanning the entire class of continuous distributions (Escobar & West (1995) and

Ghosal et al. (1999)), ii) as a prior to a infinite ordered mixture model, the DPM

is more flexible and realistic than a mixture model with a predetermined number of

components, iii) with the DPM the data determines the number of mixture clusters

that best fit the data, iv) parsimony can be imposed through the DPM prior’s

hyperparameters, v) as a conjugate prior the DPM is easy to use and facilitates

Gibbs sampling, and vi) it works well in practice.1

The goal of this paper is to create a flexible semiparametric stochastic volatility

model by combining a nonparametric iid DPM model of innovations scaled by an

autoregressive model of the return’s latent conditional variance process. As a semi-

parametric model the DPM version of the stochastic volatility model nests parametric

volatility models commonly used in finance within it. The paper’s semiparametric

SV model is also capable of modeling skewness, multimodality, and kurtotic type

behavior. Because the Dirichlet process prior is a discrete distribution with proba-

1Examples of the DPM model in economics include Chib & Hamilton (2002), Griffin & Steel
(2004), Hirano (2002), Jensen (2004), Kacperczyk et al. (2005), and Tiwari et al. (1988). Jensen
(2004) used a DPM to model the distribution of additive noise of log-squared returns while in this
paper we are concerned with the conditional distribution of returns.
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bility one, the DPM places a high probability on mixture models with a manageable

number of mixture clusters. The posterior distribution of the return innovations will

thus consist of a finite mixture whose exact number of clusters and parameter values

will be determined by the return data. In other words, by using the DPM we are

able to impose parsimony through the prior, which is important for producing good

forecasts. Something that is difficult in the classical setting.

A Markov chain Monte Carlo (MCMC) sampler is constructed to estimate the

unknown parameters of our Bayesian semiparametric SV model. The paper’s MCMC

algorithm extends the DPM samplers of West et al. (1994) and MacEachern & Müller

(1998) to the time-varying structure of the stochastic volatility model. Due to the

independence between the volatility process and the Dirichlet process mixture model,

a tractable efficient posterior sampler is possible. Conditional on the value of the

other, one block of the sampler consists of drawing the parameters associated with

the DPM, whereas in the other blocks the parametric parameters and latent volatil-

ity associated with the stochastic volatility model are drawn (see Chib et al. (2002),

Eraker et al. (2003), Jacquier et al. (1994, 2004), and Kim et al. (1998)). In ad-

dition to providing smoothed estimates of the latent volatility process, the sampler

generates a predictive density for returns that fully accounts for the uncertainty in

the volatility process as well as the unknown return distribution.

A second contribution found in the paper is a simple random block sampler of

latent volatility. We extend Fleming & Kirby (2003) block sampler of volatility by

including the return data in the sampler’s proposal distribution. This results in better

candidate draws to the Metropolis-Hasting sampler resulting in lower correlation

among draws and fewer sweeps. The sampler can also be used for all the SV models

discussed in the paper.

We evaluate our semiparametric SV model against standard SV models found in

the literature; the SV-N model and the SV model with Student-t innovations (SV-t).

In simulation studies, we find that the semiparametric model accurately captures the

return distribution and volatility clustering. The parametric models display severe

parameter bias when they misspecify the conditional distribution while the semipara-

metric model performs well for each simulated SV model. In an empirical applica-
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tion with daily CRSP return data, the predictive distribution for the semiparametric

model is very different from the parametric SV models. The semiparametric SV

model’s predictive density displays negative skewness and kurtosis whereas neither

the SV-N nor SV-t do. The estimate of the variance of log-volatility is consider-

ably smaller for the semiparametric model indicating that some tail thickness in

conditional returns is better captured by the iid DPM component of returns.

The paper is organized as follows. The next section introduces basic concepts

concerning Bayesian nonparametrics including the Dirichlet process prior and the

Dirichlet process mixture model. The semiparametric stochastic volatility model

with DPM return innovations is discussed in Section 3. Section 4 present Bayesian

inference for the model and Section 5 discusses features of the model. Simulation

examples comparing existing parametric models with our semiparametric model are

presented in Section 6 while an application to daily return data is found in Section 7.

Section 8 contain our conclusions and suggestions for possible future extensions for

our Bayesian semiparametric SV model.

2 Bayesian Nonparametric Modeling

2.1 Dirichlet Process Prior

Let z1, z2, . . . , zn be a sequence of independently and identically distributed random

variables defined on some measurable space (Φ,F) whose probability distribution

function F is unknown. Being unknown, F represents the “parameter” in a non-

parametric model of the z’s distribution. As with all Bayesian estimators, estimat-

ing F requires placing a prior distribution on it. In an effort to produce a prior

for F whose support is not only large enough to span the space of probability dis-

tribution functions, but also a prior that will lead to an analytically manageable

posterior distribution, Ferguson (1973) derived the Dirichlet process prior. A Dirich-

let process prior, denoted by F ∼ DP (G0, α), with base distribution G0 and scalar

precision parameter, α > 0, generates the random probability distribution F if for

all finite measurable partitions, {Φi}
J
i=1, of the sample space, Φ, the distribution of
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the random vector, (F (Φ1), . . . , F (ΦJ)), is the Dirichlet distribution with parameters

(αG0(Φ1), . . . , αG0(ΦJ )).

To better understand and appreciate the flexibility of the Dirichlet process as a

prior for F , let {Φ0,Φ1} form a simple partition of Φ; i.e., Φ0∪Φ1 = Φ and Φ0∩Φ1 =

{}. Using the definition of DP (G0, α), the random function F (Φ0) will be distributed

as a Beta(αG0(Φ0), αG0(Φ1)) distribution (when J = 2, the Beta distribution is a

special case of the Dirichlet distribution). It follows from the properties of the Beta

distribution and G0 being a probability measure that the prior for F has a mean

distribution of E[F (Φ0)] = G0(Φ0) with variance Var[F (Φ0)] = G0(Φ0)G0(Φ1)/(α +

1) = G0(Φ0)(1−G0(Φ0))/(α+1). In other words, the DP (G0, α) prior for F centers

F around G0. Because α is found in the denominator of Var[F ], larger values of α

lead to the prior of F having a smaller variance. Hence, α can be viewed as measuring

one’s belief as to how well G0 represents F .

In our example, the conjugacy property of the Beta distribution with the binomial

likelihood function for z = (z1, . . . , zn)′ leads to the posterior distribution:

F (Φ0)|z ∼ Beta

(
αG0(Φ0) +

n∑

i=1

δzi
(Φ0), αG0(Φ1) +

n∑

i=1

δzi
(Φ1)

)
,

where δzi
(·) is the Dirac function such that δzi

(Φj) = 1 if zi ∈ Φj and zero otherwise.

It follows from the properties of the Beta distribution that the posterior mean and

Bayesian estimate of P [Z ∈ Φ0] equals:

E[F (Φ0)|z] =
α

α + n
G0(Φ0) +

n

α + n

n∑

i=1

δzi
(Φ0)/n.

E[F |z] is equivalent to a Polya urn scheme (see Blackwell & MacQueen (1973)).

A Polya urn scheme involves sequentially drawing from an urn filled with colored

balls whose colors are distributed according to the distribution G0. Upon observing

the color of the sampled ball another ball of exactly the same color is added to the

urn along with the sampled ball. With this interpretation of the DP-prior, z1 is

distributed as the base distribution G0 (assuming α 6= 0) since there are no other

observations. The distribution of subsequent zis is either the empirical distribution
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of the observed z1, . . . , zi−1, or like z1, distributed as G0. Notice also that as more

and more zis are observed, in other words, as n → ∞, the distribution of zn will

tend to the empirical distribution of the observed zis; i.e., E[F |z] →
∑n

i=1 δzi
/n as

n→ ∞.

The Dirichlet process’s posterior properties for the partition, {Φ0,Φ1}, apply in

a general manner to all partitions of Φ. Thus, the Dirichlet process prior, zi|F ∼

DP (G0, α), i = 1, . . . , n, produces the Dirichlet process posterior distribution F |z ∼

DP (G∗
0, α+n), where G∗

0 = α
α+n

G0 + 1
α+n

∑n
i=1 δzi

. As a conjugate prior to multino-

mial outcomes, the DP is thus both manageable and intuitive, leading to a posterior

distribution equal to a weighted average of the prior, G0, and the empirical distribu-

tion, n−1
∑n

i=1 δzi
.

The DP -prior for F can be concisely written in terms of an infinite mixture of

point mass functions:

F =
∞∑

j=1

VjδZj
,

where the probabilities are defined by V1 = W1, and Vj = Wj

∏j−1
s=1(1 −Ws) with

Wj ∼ Beta(1, α), and Zj ∼ G0, j = 1, 2, . . . (Sethuraman (1994)). This mixture rep-

resentation of the DP -prior helps illustrate why it is referred to as a stick-breaking

prior. At each stage j a stick initially of unit length is independently and randomly

broken into length Vj by breaking off Wj percent of the remaining stick. This stick-

breaking representation of F , however, also reveals one of the DP -prior’s shortcom-

ings. Although the DP -prior spans the space of all discrete probability distributions

it does so with probability one. As a result the class of continuous distributions lies

outside the scope of the DP -prior.

2.2 Dirichlet Process Mixture

A prior that does span the entire set of continuous probability distributions with

probability one is the Dirichlet process mixture (DPM) model:

zi
iid
∼

∞∑

j=1

Vjf(·|φj), (1)
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where f is a continuous, nonnegative valued kernel and Vj and φj , j = 1, . . . , are de-

fined in the same stick-breaking manner as Section 2.1.2 In addition to this Setheru-

man type representation, the DPM also has the hierarchical form:

z ∼ f(·|φ),

φ|G
iid
∼ G,

G|G0, α ∼ DP (G0, α).

Under the DPM prior the unknown distribution F is modeled as a mixture of

mixtures with a countably infinite number of clusters. With an infinite number of

clusters the DPM is more flexible than a finite ordered mixture model. It also elimi-

nates the trouble of having to choose the “best” number of clusters (see Richardson

& Green (1997) for a Bayesian approach to inferring the correct number of clusters

for a finite mixture model).

Suppose f(·|φj) is the normal density function where φj = (ηj , λ
−2
j ), ηj is the

mean, and λ−2
j the variance. If we make no distributional assumptions concerning

Vj or φj, estimating F cannot be carried out since the model’s infinite number of

unknowns, {Vj, φj}j=1,..., are not identified by a finite length vector z. Fortunately,

the discrete nature of the Dirichlet process that earlier posed a problem as a prior

for F becomes useful as a prior for φj. Since F ’s prior models zi|φi
iid
∼ f(·|φi) with

φi|G
iid
∼ G, we can write:

z1, . . . , zn|F
iid
∼

∫
f(·|G)G(dφ), (2)

where G ∼ DP (G0, α); i.e., G =
∑∞

j=1 Vjδφj
.

Because φi|G ∼ G and G ∼ DP (G0, α), our example of the DP -prior in Section

2.1 applies to φ. The probability of φi conditional on the values of φ1, . . . , φi−1 equals:

P (φi ∈ Φ0|φ1, . . . , φi−1) = E[G(Φ0)|φ1, . . . , φi−1]

=
α

α + i− 1
G0(Φ0) +

1

α + i− 1

i−1∑

j=1

δφj
(Φ0). (3)

2See Lo (1984), Ghosal et al. (1999) and Ghosal & van der Vaart (2007) for a discussion on the
posterior consistency of the DPM model.
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¿From the construct of Equation (3), φi|φ1, . . . , φi−1 follows a Polya urn scheme.

Notice also that since the probability of drawing a new φi approaches zero as α → 0,

a smaller α causes Equation (2) to have fewer clusters and parameters. At the other

extreme, as α → ∞, F will be a heavily parameterized mixture model consisting of

a large number of clusters where each clusters parameter φi is a unique realization

from G0.

Combining π(φi|φ1, . . . , φi−1) with the likelihood f(zi|φi) produces the posterior:

φi|φ1, . . . , φi−1, zi ∼ c
α

α + i− 1
g(zi)G(dφ|zi) +

c

α + i− 1

i−1∑

j=1

f(zi|φj)δφj
(4)

where g(zi) =
∫
f(zi|φ)G0(dφ)dφ is the normalizing constant to the posterior distri-

bution G(dφ|zi) ∝ f(zi|φ)G0(dφ), and c is the proportional constant ensuring the

probabilities in Equation (4) sum to one.

Suppose the kernel for the DPM is the normal density function with a fixed

mean of zero but a random variance, σ2
j ; i.e., f(·|φj) ≡ fN(·|0, σ2

j ). By letting Inv-

Γ(m + 2, σ2
0(m − 1)) be the base distribution3 to the DP prior of σ2

j and allowing

α → ∞, the DPM is equivalent to the scaled t-distribution return model of Praetz

(1972). The prior on σ2
j as described by Praetz represents the changing expectations

of investors concerned with moving interest rates, random earnings, varying levels

of risk, altering states of the economy, etc. Under the DPM the first term in Equa-

tion (4) is well defined and equal to the product of a Student-t density function, with

2m degrees of freedom and the scaling factor
√

2m/(2(m− 1)), and a inverse Gamma

density function, with shape m+ 3 and scale σ2
0(m− 1) + z2

i /2. Given the Polya urn

interpretation of the DPM prior, as α→ ∞ there is zero probability σ2
i will be drawn

from one of the existing σ2
1, . . . , σ

2
i−1. Instead, at every observation, zi, a new σ2

i will

be sampled from the inverse Gamma distribution, Inv-Γ(m+ 3, σ2
0(m− 1) + z2

i /2).

The lognormal-normal mixture model of returns by Clark (1973) has a similar

DPM representation. However, Clark assumes σ2
j is distributed as a log-normal; i.e.,

in the DPM representation G0 ≡ lnN . Since the log-normal distribution is not a

3In the following we use Γ(a, b) to denote a Gamma distribution and Inv-Γ(c, d) to denote an
inverse Gamma distribution.
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conjugate prior to fN (·|0, σ2
j ), the posterior predictive density, g(zi), and distribution,

G(dφ|zi), do not have an analytical form like in Praetz’s model.

2.3 DPM Gibbs Sampler

Except for some pathological cases analytical expressions of φ’s posterior expectation

are not possible. Fortunately, a Markov chain of the φi’s conditional posteriors

can be formed and shown to converge in the limit to the posterior distribution,

π(φ1, . . . , φn|z). Applying the law of total probability, the prior for the φis can be

written as π(φ1, . . . , φn) = π(φ1)π(φ2|φ1) . . . π(φn|φn−1, . . . , φ1). Combining these

conditional priors with their likelihood f(zi|φi) produces the posterior distribution:

π(φ1, . . . , φn|z) = π(φ1)f(z1|φ1)
n∏

i=2

π(φi|φi−1, . . . , φ1)f(zi|φi).

Equation (4) is helpful in designing a sampler of the conditional posteriors, but

a Markov chain requires the draws of the φis to be conditional on all the other φj,

j 6= i. Fortunately, Escobar (1994) proves that since the φi’s are exchangeable, in

other words, because their joint probability distribution is invariant to permutation,

the φi and zi can always be treated as if they were the last observation. Applying the

exchangeability property to Equation (4) and π(φi|φ
(i), zi), where φ(i) is the vector

containing the elements φj, j 6= i, the conditional posterior distribution equals:

φi|φ
(i), zi ∼ c

α

α + n− 1
g(zi)G(dφ|zi) +

c

α + n− 1

∑

j 6=i

f(zi|φj)δφj
. (5)

Draws from the posterior can then be obtained by sequentially sampling from Equa-

tion (5) for i = 1, . . . , n. When G0 is a conjugate based distribution to the likelihood

f(·|φj) sampling from Equation (5) is relatively straight forward (see Escobar & West

(1995)). Otherwise, a more taxing approach is required (see MacEachern & Müller

(1998) and Neal (2000) on how to handle the non-conjugate case).

Unfortunately, sampling from φi|φ
(i), zi produces highly correlated draws of the

φs. High levels of correlation in the realizations require a large number of sweeps in

order to generate realizations from the entire support of the posterior distribution,
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φ1, . . . , φn|z. This inefficiency in the sampler comes from the finite nature of the

DP -prior. Under the DP -prior the elements {φi} will often equal one another and

produce a group of φis having the same value. If the size of the group of φis having the

same value is large, the element-by-element sampler of φ1, . . . , φn|z will continually

produce realizations equal in value to the existing draws. As a result, the algorithm

often gets stuck sampling from the same set of φj and does not generate any new

unique realizations of φi.

West et al. (1994) and MacEachern & Müller (1998) overcome this inefficiency

by designing a sampling algorithm that draws from an equivalent distribution to

φ1, . . . , φn|z. Let θ = (θ1, . . . , θk)
′ denote the set of distinct φi’s, where k ≤ n.

Define the state vector s = (s1, . . . , sn)
′ to be configured such that si = j, when

φi = θj , where i = 1, . . . , n, and j = 1, . . . , k. Let nj be the number of si = j for

i = 1, . . . , n. Also define k(i) to be the number of distinct θj in φ(i), and n
(i)
j to be the

number of observations where si′ = j, for i′ 6= i. Using this notation, Equation (5)

can be rewritten as:

φi|φ
(i), zi ∼ cαg(zi)G(dφ|zi) + c

k(i)∑

j=1

n
(i)
j f(zi|θj)δθj

. (6)

Draws from φ1, . . . , φn|z are again made from the conditional distribution (either

Equation (5) or (6)), however, each sweep of the sampler now consists of the following

two steps:

Step 1. Draw s and k by drawing si for i = 1, . . . , n, from Equation (6).

Step 2. Given s and k, sample θj , j = 1, . . . , k from:

θj |z, s, k ∝

[
∏

i:si=j

f(zi|θj)

]
G0(dθj).

Step 1 is the same as in the previous DPM sampler except instead of retaining

the drawn φis they are now discarded after Step 1 and only the state vector, s, and

the number of clusters, k, are used in Step 2. In the context of sampling si, if a new
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θ is sampled from G(dφ|zi), k is increased by 1, and si is set equal to the new value

of k. Likewise, if n
(i)
j = 0, in other words, θj is only observed at the ith observation,

θj is dropped from θ and is not resampled. Instead, a new value for si is drawn

either from one of the existing clusters, in which case k would decrease by 1, or θj is

sampled from G(dφ|zi) and si continues to equal j.

In Step 2, the φi’s associated with the jth-cluster are block updated by sampling

from the posterior of θj conditional on the observations associated with the jth

cluster. Thus, instead of sampling from φ1, . . . , φn|z element-by-element as in the

sampler of Escobar & West (1995), a more efficient block sampler of drawing from

θj |θ
(j), z, s, k is employed. This ensures that the realizations of φi will be uncorrelated

and representative of a nice mixture of draws from the posterior distribution. The

parameter α can also be sampled, which will add a third step to the above procedure.

We allow for this in the stochastic volatility model of the next section.

After iterating on Steps 1 and 2 a number times we obtain a large collection

of draws denoted as {θ(r)}R
r=1 from the posterior. Note that for each drawn θ =

{θ1, ..., θk}, there is an associated state vector s, and number of observations in each

cluster {n1, ..., nk}, such that
∑k

j=1 nj = n. The number of clusters k will vary from

sweep to sweep, so that the size of θ will change and hence, the number of mixture

orders will too. The Bayesian estimate of the DPM model’s predictive density is

obtained by integrating out these unknowns as in:

π(zn+1|z) =

∫
π(zn+1|θ, n1, . . . , nk)π(θ, n1, . . . , nk, α|z)dθdn1 . . . dnk,

≈
1

R

R∑

r=1

π(zn+1|θ
(r), n

(r)
1 , . . . , n

(r)

k(r), α
(r)), (7)

where:

π(zn+1|θ, n1, . . . , nk) =
α

α + n
g(zn+1) +

k∑

j=1

nj

α + n
f(zn+1|θj), (8)

and g(zn+1) =
∫
f(zn+1|φ)G0(dφ)dφ.
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3 Stochastic Volatility and DPM Innovations

We now model the return of an asset with a stochastic volatility model whose distri-

bution is modeled nonparametrically with the Dirichlet process mixture prior. The

stochastic volatility, Dirichlet process mixture model (SV-DPM), is defined as:

yt = ηt + λ−1
t exp(ht/2)ǫt, ǫt

iid
∼ N(0, 1), (9)

ht = δht−1 + σvvt, vt
iid
∼ N(0, 1), ǫt ⊥ vt, (10)(

ηt

λ2
t

)∣∣∣∣G
iid
∼ G, (11)

G|G0, α ∼ DP(G0, α), (12)

G0(ηt, λ
2
t ) ≡ N

(
m, (τλ2

t )
−1
)
− Γ(v0/2, s0/2), (13)

where at time t = 1, . . . , n the continuously compounded return from holding a finan-

cial asset equals yt and the latent log-volatility ht follows the first-order autoregressive

(AR) process defined by Equation (10) with the AR-parameter δ. Identification of

the SV-DPM model requires the intercepts of both yt and ht to equal zero with their

effect subsumed into ηt and λ2
t . Stationary returns are ensured by restricting δ to the

interval (−1, 1). This guarantees a finite mean and variance for the volatility process,

ht. By the notation ǫt ⊥ vt found in Equation (10), we are assuming the innovations

to the return and volatility process are independent of one another; i.e., there are no

explicit leverage effects in the SV-DPM model (see Jacquier et al. (2004); Yu (2005);

Omori et al. (2007)).4

In Equation (11)-(13), the SV-DPM unconditional distribution is modeled non-

parametrically by an infinite ordered mixture of normals. Being a dense basis func-

tion to the entire class of continuous distributions, this mixture of normals with its

different means ηt and variances λ−2
t is fully flexible with regards to the type of dis-

tribution it is able to fit. Equation (11)-(12) assumes the mixture parameters ηt and

λ2
t are distributed a priori as a Dirichlet process. The Dirichlet process prior for G is

4Including leverage effects can be done but the DPM portion of the model becomes computa-
tionally challenging. As a result, we choose to focus on a SV model without leverage effects and
leave this a topic for future research.
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formally defined in Equation (12)-(13) by the conjugate conditional normal-gamma

base distribution, G0, and the nonnegative precision parameter α.

The SV-DPM model of Equation (9)-(13) can also be written in terms of its

Sethurman representation:

yt|ht
⊥
∼

∞∑

j=1

VjfN

(
·|ηj, λ

−2
j exp{ht}

)
, (14)

where fN (·|m, v2) is a normal density with mean m and variance v2,
⊥
∼ denotes

a sequence of random variables that are independently distributed, V1 = W1, and

Vj = Wj

∏j−1
s=1(1 −Ws) with Wj ∼ Beta(1, α), and (ηj , λ

2
j) ∼ G0.

The SV-DPM is more flexible at modeling the distribution of yt than are the exist-

ing class of parametric SV models. In the terminology of Müller & Quintana (2004),

the SV-DPM model “robustifies” the class of parametric SV models. By modeling

the distribution of yt innovation with a Dirichlet process mixture, diagnostics and

sensitivity analysis can be conducted by nesting parametric SV models within the

SV-DPM model. For example, when V1 = 1, Vj = 0 for j > 1, and φt = (η, λ2) for

t = 1, . . . , n, Equation (14) equals the the autoregressive, stochastic volatility model

of Jacquier et al. (1994). The SV-t model of Harvey et al. (1994) with ν degrees of

freedom is also nested within the SV-DPM model by setting α → ∞, φt = (0, λ2
t )

and G0(λ
2
t ) ≡ Γ(ν/2, ν/2). Geweke & Keane (2007) also model the return of an asset

as a mixture with their smoothly mixing regression model. But unlike the infinite

ordered mixture representation of the SV-DPM model, the smoothly mixing regres-

sion model sets the number of mixture clusters a priori. Probabilities of a particular

cluster are then determined by a multinomial probit whose covariates are a nonlinear

combination of lagged and absolute returns.

4 Bayesian Inference of the SV-DPM

The inherent difficulty with all stochastic volatility models, regardless of the inno-

vations being modeled parametrically or nonparametrically, is the intractability of

the SV’s likelihood function. Since yt is comprised of the two innovations, ǫt and
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vt, and because log-volatility ht enters through the variance of yt, the model’s likeli-

hood function does not have an analytical solution. Bayesian estimation of the SV

model bridges this problem by augmenting the model’s unknown parameters with

the latent volatilities and designing a hybrid Markov chain Monte Carlo algorithm

(Tanner and Wong, 1987) to sample from the joint posterior distribution, π(ψ, h|y),

where ψ = (δ, σv)
′, h = (h1, . . . , hn)

′ and y = (y1, . . . , yn)
′ (see Jacquier et al. (1994);

Kim et al. (1998); Chib et al. (2002); and Jensen (2004)).

In the context of the SV-DPM model for yt and its unknown parameters φ =

(φ1, . . . , φn)
′, Bayesian augmenting can be extended to include a MCMC sampler of

the posterior π(ψ, h, φ|y). Since the likelihood function of the SV model is intractable

and because we do not know the number of mixtures of the nonparametric distri-

bution nor their values, we are precluded from directly sampling from π(ψ, h, φ|y).

Instead, we judiciously break up the augmented posterior distribution into tractable

blocks of conditional posterior distributions and design a stylized MCMC sampler for

each block. The accuracy of the sampler and its computational costs are dependent

on how the blocks of the unknowns are selected, on the level of dependency between

the conditional distributions and random variables, and on the type of sampling

algorithm used.

The blocking scheme we design for the SV-DPM consists of iteratively sampling

through the following conditional distributions:

1. π(ψ|y, h)

2. π(h|y, φ, ψ)

3. π(φ|y, h).

4. π(α|y, h)

One full iteration through these conditional distributions denotes a sweep of the

MCMC sampler.
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4.1 Parameter sampler

Sampling from π(ψ|y, h) is straight forward. We assume the priors for δ and σ2
v are

independent, in other words, π(ψ) = π(δ)π(σ2
v), where the marginal prior distribu-

tions are π(δ) ∝ N(µδ, σ
2
δ )I|δ|<1, a normal truncated to the stationary region of δ’s

parameter space, and π(σ2
v) ∼ Inv-Γ(vσ/2, sσ/2). Under this prior for ψ, draws from

δ, σ2
v |h are made by sequentially sampling from the conditional marginal distribu-

tions, δ|h, σ2
v ∼ N(δ̂, σ̂2

v)I(|δ| < 1), where:

δ̂ = σ̂2
δ

(∑n
t=2 ht−1ht

σ2
v

+
µδ

σ2
δ

)
, σ̂2

δ =
σ2

vσ
2
δ

σ2
δ

∑n
t=2 h

2
t−1 + σ2

v

,

and σ2
v |h, δ ∼ Inv-Γ((n − 1 + vσ)/2, [sσ +

∑n
t=2(ht − δht−1)

2]/2). If a draw from

δ|h, σ2
v result in a realization outside the stationary set for δ, the draw is discarded

and another draw is made until a value from within the parameter space is obtained.

4.2 Latent volatility sampler

Drawing latent volatilities is a difficult sampling problem that has attracted the

attention of the profession (see Jacquier et al. (1994); Pitt & Shephard (1997); Kim

et al. (1998); Chib et al. (2002), and Fleming & Kirby (2003)). One option for

drawing the volatilities for the SV-DPM model is to apply the element-by-element

volatility sampling algorithm of Jacquier et al. (1994) (JPR) and sequentially draw

from ht|yt, ht−1, ht+1, φt, ψ, t = 1, . . . , n. Conditional on the mixture mean, ηt = 0,

and variance, λ−2
t = 1, for all t, the JPR volatility sampler for the SV-DPM model

is exactly the same as the SV-N model. If ηt and λ−2
t do not respectively equal 0

and 1 then the JPR volatility sampler is applied to the standardized return, ỹt =

(yt−ηt)/λ
−1
t , t = 1, . . . , n. Given any value for ηt and λ−2

t , the entire suite of existing

element-by-element samplers by Geweke (1994), Pitt & Shephard (1997), Kim et al.

(1998), and Jacquier et al. (2004) can be directly applied to ỹ.

Since each draw of ht is conditional on the previous draw of ht−1 and ht+1,

element-by-element samplers are known to be very inefficient and require throwing

away a large number of initial draws of h to ensure that the sampler is not dependent
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on its starting values. This dependency between the hts also leads to strong levels of

correlation between their realizations. As a result, a larger number of sweeps must

be carried out in order for the sampler to produce draws from across the support

of h|y, ψ, φ. This is very taxing for the SV-DPM model since each additional sweep

requires sampling from φ|y, h which costs a number of computing cycles.

Ideally one would like to sample from h|y, ψ, φ in a single draw (see Kim et al.

(1998); and Chib et al. (2002)). This eliminates the correlation between draws,

but requires taking the log-squared transformation of y. In the context of the SV-

DPM model the tangible nature of the DP prior for φt is lost under a log-square

transformation of y. Thus, sampling the entire h in one draw is not feasible with the

SV-DPM model. Fortunately, less correlated draws of the volatilities can be found by

sampling random length blocks of volatilities instead of the entire vector (see Elerian

et al. (2001) and Fleming & Kirby (2003)).

Our random length block sampler divides h into blocks of subvectors {h(t,τ)},

where h(t,τ) = (ht, ht+1, . . . , hτ )
′, 1 ≤ t ≤ τ ≤ n, and the length of the subvector

lt = τ − t + 1 is randomly drawn from a Poisson distribution with hyperparameter

λh = 3; i.e., E[lt] = 4. By letting the length be random we ensure that with

each sweep different subblocks of h are sampled. This helps reduce the degree of

dependency that would exist if lt were fixed. By lowering the level of correlation in

the draws of the h(t,τ), we reduce the number of sweeps needed to produce reliable

estimates of the model parameters.

Because the desired density:

π
(
h(t,τ) |y, ht−1, hτ+1, ψ, φ

)
∝ f

(
y
∣∣h(t,τ), φ, ψ

)
π
(
h(t,τ)

∣∣ht−1, hτ+1, ψ
)
,

does not come from a standard distribution, we design a Metropolis-Hastings (MH)

sampler of the above target density where we extend the sampler of Fleming &

Kirby (2003) to include the return data, y. Fleming & Kirby (2003) show that if the

log-volatility process is approximated by the random walk ht = ht−1 + σvvt then a

reasonable proposal for the target distribution is:

h(t,τ)|ht−1, hτ+1, σ
2
v ∼ N

(
m(t,τ),Σ(t,τ)

)
, (15)
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where the lt × 1 vector m(t,τ) = (mt, . . . , mτ )
′, and lt × lt covariance matrix Σ(t,τ) ={

σ
(t)
i,j

}
i,j=t,...,τ

, are defined by their elements:

mt+i =
(lt − i)ht−1 + (i+ 1)hτ+1

lt + 1
, i = 0, . . . , lt − 1, (16)

σ
(t)
i,j = σ2

v

min(i, j)(1 + lt) − ij

lt + 1
, i = 1, . . . , lt, and, j = 1, . . . , lt. (17)

The inverse of the covariance matrix to the proposal distribution has the convenient

tridiagonal form:

Σ−1
(t,τ) =




2/σ2
v −1/σ2

v 0 . . .

−1/σ2
v 2/σ2

v −1/σ2
v

. . .

0 −1/σ2
v 2/σ2

v
. . .

...
. . .

. . .
. . .




(18)

making evaluation of the proposal density’s quadratic term (h(t,τ)−m(t,τ))
′Σ−1

(t,τ)(h(t,τ)−

m(t,τ)) quick and easy.

Since the proposal distribution in Equation (15) ignores the information found in

the return vector, y(t,τ) = (yt, . . . , yτ)
′, a better proposal distribution would be one

that incorporates this data. Such a distribution would help the MH sampler converge

more quickly and result in a better mixture of draws from the latent volatility’s target

distribution.

Once again the desired target density is:

π(h(t,τ)|y(t,τ), ht−1, hτ+1, ψ, φ) ∝ f(y(t,τ)|h(t,τ), φ)π(h(t,τ)|ht−1, hτ+1, ψ),

≈ f(y(t,τ)|h(t,τ), φ(t,τ)) fN

(
h(t,τ)

∣∣m(t,τ),Σ(t,τ)

)
,(19)

where the random walk approximation of Fleming & Kirby (2003) has been applied

to π(h(t,τ)|ht−1, hτ+1, ψ). The likelihood function:

f(y(t,τ)|h(t,τ), φ(t,τ)) ∝ exp
{
−0.5

(
ι′h(t,τ) + ỹ2′

(t,τ) exp{−h(t,τ)}
)}

, (20)

with ι being a lt × 1 vector of ones, ỹ2
(t,τ) = (ỹ2

t , . . . , ỹ
2
τ)

′, and exp{−h(t,τ)} =

(exp{−ht}, . . . , exp{−hτ})
′. Replacing the exp{−h(t,τ)} vector in Equation (20) with
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its first-order, Taylor series approximation, exp{−h(t,τ)} ≈ D(t,τ)(ι +m(t,τ) − h(t,τ)),

where the lt × lt diagonal matrix D(t,τ) = diag{exp(−m(t,τ))}, results in:

exp
{
−0.5

(
ι′h(t,τ) + ỹ2′

(t,τ) exp{−h(t,τ)}
)}

≤ exp
{
−0.5

(
ι′ − ỹ2′

(t,τ)D(t,τ)

)
h(t,τ)

}
. (21)

Substituting the righthand side of Equation (21) for the f(y(t,τ)|h(t,τ), φ(t,τ)) term in

Equation (19) and collecting terms in the quadratic form of h(t,τ) leads to our MH

sampler’s fat-tailed proposal density:

fSt
(h(t,τ)|ζ(t,τ),Σ(t,τ), ν) ∝

[
1 + (h(t,τ) − ζ(t,τ))

′Σ−1
(t,τ)(h(t,τ) − ζ(t,τ))/ν

]−(lt+ν)/2

(22)

where fSt
(h(t,τ)|ζ(t,τ),Σ(t,τ), ν) is the density of a lt-variate Student-t distribution

with mean, ζ(t,τ) = m(t,τ) −0.5Σ(t,τ)(ι−D(t,τ)ỹ
2
(t,τ)), covariance, Σ(t,τ)ν/(ν−2), and ν

degrees of freedom (in the simulated and empirical examples of Sections 6 and 7 we

set ν equal to 10). For the endpoints h1 and hn, we generate h0 and hn+1 according

to the volatility dynamics and use the same proposal density.

Given the previous sweeps MCMC draw of h(t,τ), the candidate draw, ĥ(t,τ) ∼

St(ζ(t,τ),Σ(t,τ), ν), will be accepted as a realization from the target distribution with

MH probability:

min

{
f(y(t,τ)|φ(t,τ), ĥ(t,τ)) π(ĥ(t,τ)|ht−1, hτ+1, ψ)

f(y(t,τ)|φ(t,τ), h(t,τ)) π(h(t,τ)|ht−1, hτ+1, ψ)

fSt(h(t,τ)|ζ(t,τ),Σ(t,τ), ν)

fSt(ĥ(t,τ)|ζ(t,τ),Σ(t,τ), ν)
, 1

}
,

where f(y(t,τ)|φ(t,τ), h(t,τ)) =
∏τ

j=t fN (yj|ηj, λ
−2
j exp{hj}) and:

π(h(t,τ)|ht−1, hτ+1, ψ) =

τ+1∏

j=t

exp

{
−

(hj − δhj−1)
2

2σ2
v

}
.

4.3 DPM sampler

Conditional on a draw of ψ and h from π(ψ, h|y, φ), sampling from the posterior

distribution φ|y, h is done through a variant of the sampler in Section 2.2. To describe

the sampler of φ we rewrite Equation (9), the compound return equation, as:

y∗t = ηt exp{−ht/2} + λ−1
t ǫt, ǫt

iid
∼ N(0, 1), (23)
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where y∗t ≡ yt exp{−ht/2}. Once again, to improve the mixing behavior of the

sampled φs we appeal to the equivalent distribution θ, s|y∗ and indirectly draw φ by

sampling θ and s. Draws from θ, s|y∗ are made with the two step procedure:

Step 1. Sample s and k by drawing sequentially φt and st for t = 1, . . . , n from:

φt|y
∗
t , φ

(t) ∼ c
α

α + n− 1
g(y∗t ) G(dφ|y∗t )

+
c

α + n− 1

k∑

j=1

n
(t)
j f(y∗t |θj) δθj

(φt). (24)

Step 2. Given the s and k from Step 1, sample θj , j = 1, . . . , k from:

θj |y
∗, s, k ∝

∏

t:st=j

fN

(
y∗t |ηj exp{−ht/2}, λ

−2
j

)
G0(dθj). (25)

In Step 1 the probability of st equaling the jth cluster is proportional to the

number of other times the jth cluster occurs, n
(t)
j , times the likelihood of y∗t belonging

to the jth cluster, f(y∗t |θj) ≡ fN(y∗t |ηj exp{−ht/2}, λ
−2
j ). On the other hand, the

probability of st being a new cluster and k increasing by one is proportional to the

predictive density:

g(y∗t ) ≡

∫
f(y∗t |φ) G0(dφ) dφ,

=

∫
1√

2π exp{ht}λ−2
exp

{
−

(y∗t − η exp{−ht/2})
2

2λ−2

}
G0(dφ) dφ,

= fSt (y
∗
t |m exp{−ht/2}, (exp{ht} + τ)s0/(τv0), v0) ,

= fSt(yt|m, (1 + τ exp{ht})s0/(τv0), v0), (26)

where fSt(.|m, s, v) denotes the probability density function of a Student-t distribu-

tion with mean m, variance vs/(v− 2), and v degrees of freedom. If a new cluster is

drawn, a new φt and, hence, a new θk+1, is sampled from the posterior distribution:

G(dφt|y
∗
t ) ≡ f(y∗t |φt) G0(dφt).
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By the conjugate nature of the normal-gamma prior, G0, and the normality of the

likelihood function, f(y∗t |φt), the posterior, G(dφ|y∗t ), equals the normal-gamma dis-

tribution:

λ2
t |y

∗
t ∼ Γ(v/2, st/2), (27)

ηt|y
∗
t , λ

2
t ∼ N

(
µt, (τ tλ

2
t )

−1
)
, (28)

where v = v0+1, st = s0+(µt−y
∗
t )

2 exp{−ht}+(µt−m)2τ , with µt = τ−1
t (τm+ y∗t exp{−ht/2})

and τ t = τ + exp{−ht}.

Before moving to Step 2, the φ drawn in Step 1 is discarded. Step 2 then consists

of generating a new draw of φ, conditional on the s sampled in Step 1, by sampling

the unique mixture parameters, θj, j = 1, . . . , k, from the linear regression model:

y∗t |ht, st, ηj , λ
2
j ∼ N(ηj exp{−ht/2}, λ

−1
j ), (29)

where t ∈ {t′ : st′ = j}, and the prior of ηj and λ2
j is distributed according to the base

distribution, G0. Conjugacy between the normal-gamma base distribution, G0, and

the likelihood function in Equation (29) leads us to find the posterior distribution

θj |y
∗, h, s, k being the normal-gamma distribution:

λ2
j |y

∗, h, s, k ∼ Γ(vj/2, sj/2), (30)

ηj |y, h, s, k, λ
2
j ∼ N

(
µj, (τ jλ

2
j)

−1
)
, (31)

where vj = v0 + nj , sj = s0 + sj + (µj − bj)
2
∑

t:st=j exp{−ht} + (µj − m)2τ , and

µj = τ−1
j

(
τm+ bj

∑
t:st=j exp{−ht}

)
, with τ j = τ +

∑
t:st=j exp{−ht}, and bj being

the ordinary least square estimate from regressing y∗t on exp{−ht/2} over the set of

observations {t : st = j}. Lastly, sj =
∑

t:st=j (y∗t − bj exp{−ht/2})
2; i.e., the sum of

squares errors from the regression over the same set of observations where st = j.

The DPM precision parameter α is sampled using the two step algorithm of

Escobar & West (1995). Since y is conditionally independent of α when the mixture

order, k, parameter vector, φ, and state indicator vector, s, are all known, and

because φ is also conditionally independent of α when both k and s are known,

the posterior of α is only dependent on k; i.e., π(α|φ, k, s) = π(α|k) ∝ π(α)f(k|α).
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Assuming the gamma distribution, Γ(a, b), where a > 0 and b > 0, is the prior for

α, exact draws from π(α|k) are made by first sampling the random variable ξ from

π(ξ|α, k) ∼ Beta(α + 1, n), and secondly, sampling α from the mixture π(α|ξ, k) ∼

πξΓ(a + k, b − ln ξ) + (1 − πξ)Γ(a + k − 1, b − ln ξ), where πξ/(1 − πξ) = (a + k −

1)/[n(b− ln ξ)].

5 Features of the Model

After an initial burn-in phase, our MCMC algorithm for the SV-DPM model produces

a set of draws, {θ(r), s(r), α(r), δ(r), σ
2(r)
v , h(r)}R

r=1, from the desired posterior density,

π(ψ, h, θ, s, α|y). Given these draws we can produce simulation consistent estimates

of posterior quantities. For example, the posterior mean of the AR parameter for

volatility is E[δ|y] ≈ R−1
∑R

r=1 δ
(r) where this approximation can be made more

precise by increasing the number of draws, R.5

5.1 Predictive density

In a similar way various quantities of the predictive density can be estimated. The

key quantity of interest in density estimation is the predictive density. Gelfand

& Mukhopadhyay (1995) discuss this and more generally the estimation of linear

functionals for DPM models. Drawing on their findings, the in-sample predictive

posterior density for the SV-DPM model equals:

f(Yt|y) =

∫
f(Yt|θ, ht, α) π(θ, ht, α|y) dθ dht dα, (32)

≈
1

R

R∑

r=1

f
(
Yt|θ

(r), h
(r)
t , α(r)

)
, (33)

5For a full treatment on MCMC methods see Robert & Casella (1999).
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where Yt is the random asset return at time t = 1, . . . , n, θ(r), h
(r)
t and α(r) are the

rth draw from the posterior simulator6, and the conditional posterior density is:

f
(
Yt

∣∣∣θ(r), h
(r)
t , α(r)

)
=

α(r)

α(r) + n
fSt



Yt

∣∣∣∣∣∣
m,

(
1 + τ exp{h

(r)
t }
)
s0

τv0
, v0





+
k(r)∑

j=1

n
(r)
j

α(r) + n
fN

(
Yt

∣∣∣η(r)
j , λ

−2(r)
j exp{h

(r)
t }
)
. (34)

From Equation (34) one can see how flexible the SV-DPM is as a semiparametric

model of the returns predictive density. The SV-DPM models conditional predictive

density consists of a weighted mixture of normals and Student-t densities. Thus,

the predictive density is equipped to produce multiple modes, negative or positive

skewness, and other non-Gaussian type behavior.

Except for the additional structure of the stochastic volatility process, the one-

step-ahead, out-of-sample predictive density for the SV-DPM model is the same as

the predictive density of Escobar & West (1995), p. 580. The SV-DPM one-step-

ahead predictive return density equals:

f(Yn+1|y) =

∫
f(Yn+1|θ, hn+1, α) π(θ, hn+1, α|y) dθ dhn+1 dα, (35)

≈
1

R

R∑

r=1

f
(
Yn+1

∣∣∣θ(r), h
(r)
n+1, α

(r)
)
, (36)

where the conditional density:

f(Yn+1|θ
(r), h

(r)
n+1, α

(r)) =
α(r)

α(r) + n
fSt


Yn+1

∣∣∣∣∣∣
m,

(
1 + τ exp{h

(r)
n+1}

)
s0

τv0

, v0




+
k(r)∑

i=1

n
(r)
i

α(r) + n
fN

(
Yn+1

∣∣∣η(r)
i , λ

−2(r)
i exp{h

(r)
n+1}

)
,(37)

has the same form as Equation (34) but with h
(r)
n+1 being sampled fromN

(
δ(r)h

(r)
n , σ

2(r)
v

)
.

6To minimize notation we have omitted conditioning on n1, ..., nk which is the number of obser-
vations in each cluster.
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5.2 Conditional Moments

Using Equation (33) in-sample moments of the equity return can be computed. For

instance, the first and second moments of the SV-DPM models return can be ap-

proximated as:

E[Yt|y] ≈
1

R

R∑

r=1


 α(r)

α(r) + n
m+

k(r)∑

r=1

n
(r)
i

α(r) + n
η

(r)
i


 , (38)

E[Y 2
t |y] ≈

1

R

R∑

r=1


 α(r)

α(r) + n




(
1 + τ exp{h

(r)
t }
)
s0

τ(v0 − 2)
+m2




+

k(r)∑

i=1

n
(r)
i

α(r) + n

[
η

2(r)
i + λ

−2(r)
i exp{h

(r)
t }
]

 , (39)

and the returns posterior conditional variance equals Var(Yt|y) ≡ E[Y 2
t |y]−E[Yt|y]

2.

5.3 Label switching

Mixture models in general suffer from what is referred to as “label switching”; a

short-coming where the mixture parameters are unidentified. In Equation (34), the

conditional density is symmetrical over the k clusters, in other words, it will equal

the same value regardless of the particular permutation of the mixture parameters,

{ng(j), ηg(j), λg(j)}j=1,...,k, where g(j) is the permutation function of k elements. As

a result the mixture parameters of the jth cluster in one sweep of the sampler may

be assigned a different cluster label, g(j) 6= j, during another sweep of the sampler

(see Richardson & Green (1997)). The DPM clusters, therefore, cannot be used to

identify time periods where markets are in a particular state such as an expansionary

or recessionary economic state. Since our only purpose for using the DPM is to model

the distribution of ǫt nonparametrically, label switching will not present a problem in

making inferences concerning the parameters or forecasts of the stochastic volatility

model.
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6 Simulation Examples

In this section we consider two examples of simulated return data. In each case we

estimate the SV-DPM model along with conventional parametric specifications. The

first benchmark is a stochastic volatility model with normal innovations (SV-N):

yt = µ+ exp(ht/2)zt, zt ∼ N(0, 1), (40)

ht = γ + δht−1 + σvvt, vt ∼ N(0, 1).

Priors are µ ∼ N(0, 0.1), γ ∼ N(0, 100), δ ∼ N(0, 100)I|δ|<1, and σ2
v ∼ Inv-Γ(10/2, 0.5/2).

The second specification is a stochastic volatility model with Student-t return

innovations (SV-t):

yt = µ+ exp(ht/2)zt, zt ∼ St(0, (ν − 2)/ν, ν), (41)

ht = γ + δht−1 + σvvt, vt ∼ N(0, 1),

where St(0, (ν − 2)/ν, ν) is a Student-t density standardized to have variance 1, and

ν degrees of freedom. Priors are the same as in the SV-N model with ν ∼ U(2, 100).

The priors for the SV-DPM model are chosen to match the parametric SV models

with δ ∼ N(0, 100)I|δ|<1, σ
2
v ∼ Inv-Γ(10/2, 0.5/2). The specific DPM prior is the base

distribution, G0 ∼ N(0, (10λ2
t )

−1) − Γ(10/2, 10/2), and precision parameter prior,

α ∼ Γ(2, 8).

Estimation of the models is carried out with the hybrid Gibbs, Metropolis-

Hastings sampler of Jacquier et al. (2004) except that we use the random block

sampler of Section 4.2 for h. Sampling of the degree of freedom parameter for the

SV-t uses a tailored proposal density based on a quadratic approximation of the

conditional posterior density at its mode.

To eliminate any dependencies on the initial volatilities 1,000 sweeps of the step-

by-step volatility sampler of Kim et al. (1998) is carried out for each model while

holding the initial parameter values constant. 30,000 sweeps of the sampler for the

SV-N and SV-t model are then conducted of which we keep the last 10,000 draws for

inference of the two models. Because of computation time involved in drawing the

DPM parameters only 11,000 sweeps are made of the SV-DPM model with the first

1,000 draws being discarded.
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6.1 Example 1

In the first example we simulate from the SV-t specification (41) with the parameters

µ = 0, γ = −0.01025, δ = 0.95, σ2
v = 0.04, and ν = 6. The first 100 simulated

observations from this data generating process (DGP) are discarded and the next

1500 are collected for estimation.

Table 1 reports the posterior mean and standard deviation for the SV-N, SV-t

and SV-DPM as applied to the simulated SV-t data. The SV-N is misspecified and

as a result it underestimates the autoregressive parameter δ with a posterior mean

of 0.9, while overestimating the volatility of volatility parameter σ2
v with a estimate

of 0.11. The estimate for σ2
v is not all that surprising since the only way the SV-N

can approximate the fat-tails in the distribution of zt is to increase the variance of

log-volatility, σ2
v .

The SV-DPM, on the other hand, does a better job estimating the volatility pa-

rameters, producing estimates that are in general very close to the correctly specified

SV-t. Of the three SV models, the SV-DPM estimates of δ and σ2
v are the closest to

the truth at 0.93 and 0.05, respectively. The volatility of volatility estimates is better

than the true SV-t model estimate of 0.06 for σ2
v . Note also that the estimated k of

3.2343 reported in Table 1 suggests the SV-DPM is using, on average, a mixture of

normals consisting of three clusters to approximate the return innovations Student-t

distribution.

Because the SV-DPM model must set the mean of the latent volatility process to

equal to zero, a comparison between the three SV models estimate of E[ht|y] cannot

be done. What can be done, however, is to compute each models posterior conditional

return variance, Var[Yt|y], and compare it with the DGP true conditional variance,

exp{ht}. For each of the three SV models, we calculate the root mean squared error,

RMSE =
√

(1/1500)
∑1500

t=1 (Var(Yt|y) − exp{ht})2, where Var(Yt|y) for the SV-DPM

model is the full sample model estimate computed with Equation (38)-(39), and is

equal to Var(Yt|y) = R−1
∑R

r=1 exp{h
(r)
t }− [R−1

∑R
r=1 µ

(r)]2 for the SV-N model and

Var(Yt|y) = R−1
∑R

r=1 exp{h
(r)
t }ν(r)/(ν(r) −2)− [R−1

∑R
r=1 µ

(r)]2 for the SV-t model.

The last row in the Table 1 displays the RMSE for each of the three models. The
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RMSE of 0.56 for the SV-DPM is nearly indistinguishable from the SV-t model’s

RMSE of 0.57 and is much smaller than the SV-N model’s RMSE of 0.64. Figure 1

displays a time-series plot of the Var(Yt|y) for the SV-DPM and SV-t model. Except

for the couple of episodes where the DGP conditional variance dramatically increases

and the SV-t models Var(Yt|y) noticeably exceeds the SV-DPM models, the two

models estimates of exp{ht} have very similar behavior. Although we only use the

DPM to model the distribution of the return innovations, the RMSE show how

important modeling the return distribution is in estimating volatility. Not having

fat enough tails in the return process causes the SV-N model to try and compensate

for it with more extreme levels of volatility.

The estimated log-predictive densities, one period out-of-sample, ln f(YT+1|y),

for each of the three SV models are displayed in Figure 2. From this figure one is

able to conclude that the tails for the SV-N model are too thin relative the SV-t

while the SV-DPM tails are very close to those obtained from the true SV-t model.

6.2 Example 2

In this example the DGP for the SV model’s volatility process is the same as in the

previous example, but now the innovation distribution for the asset return, zt, is

replaced by a mixture of two normals:

zt ∼

{
N(µ1, σ

2
1) with probability p,

N(µ2, σ
2
2) with probability 1 − p.

(42)

Setting µ1 = −1.3791, µ2 = 0.3448, σ2
1 = 1.3112, σ2

2 = 0.3278, p = 0.2, implies a

mean, variance, skewness and kurtosis of 0, 1, −1.3056, and 5.2042, respectively, for

the return process. A plot of the mixture’s density function is provided in Figure 3,

which illustrate the negative skewness and the fat lefthand and thin righthand tails

of the conditional return distribution. In this simulation example both the SV-N and

SV-t are misspecified and cannot accommodate the asymmetric distribution of zt.

Table 2 reports the posterior parameter estimates. The SV-N estimates are ad-

versely affected by the misspecification while the SV-t estimates are somewhat more

robust to the second order mixture of normals. The SV-N estimate of 0.8 for σ2
v is

26



twenty times larger than its true value of 0.04. By assigning so much of the variabil-

ity in volatility to its variance instead of the dynamics of volatility, the SV-N model

fails to fit the highly persistent behavior of the simulated volatility data. As a result,

the SV-N model severely underestimates the AR parameter with a point estimate of

0.5 and an imprecise posterior distribution whose standard deviation is 0.1.

The SV-t model utilizes its degrees of freedom parameter, ν, to approximate some

of the asymmetry seen in the density of z. However, the SV-t smaller 3.996 estimate

of ν implies very fat symmetrical tails. Such symmetry in the distribution of returns

is inconsistent with the skewness of the true distribution.

The SV-DPM produces reasonable estimates of the autoregressive parameter and

is the only model to accurately estimates σ2
v . Volatility of volatility is found by the

SV-DPM model to be equal to 0.05; a point estimate very similar to that reported

in Example 1. Volatility’s persistence, however, is slightly less than the true value of

δ, equalling 0.89 as opposed to 0.95.

The RMSE for the estimated posterior variances further illustrates the problems

faced with the SV-N and the better performance available with the SV-t and SV-

DPM. Again the SV-N over compensates for its inability to fit the thick tails, and in

this case skewness, of the return innovations distribution by attributing this behavior

to large fluctuations in volatility. Whereas both the SV-t and SV-DPM models

RMSE are approximately equal at 0.6, the RMSE of the SV-N model equals 0.9,

nearly seventy percent larger than the other two models.

The three models predictive, one period out-of-sample, densities in Figure 4 shows

how flexible the SV-DPM model is in capturing both the negative skewness and the

fat-tail behavior of the return distribution. Neither the SV-N, nor SV-t, with their

symmetric distribution, is able to simultaneously fit these two dominate characteris-

tics of the distribution. As a result forecasts from either the SV-N and SV-t models

produce too many positive returns, while not generating enough negative ones.
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7 Empirical Example

In this section we report the results from applying the SV-DPM model to daily stock

return data. More specifically, we apply the SV-DPM model and the MCMC sam-

pler developed in Section 4 to 6815 compounded daily returns from the Center for

Research in Security Prices (CRSP) value-weighted portfolio index over the trading

days January 2, 1980 to December 29, 2006. Figure 5 plots the percentage returns

(the return series multiplied by 100). CRSP portfolio returns average 0.0529 during

this time period with a variance of 0.9225. Non-Gaussian behavior is seen in the re-

turn processes significantly negative skewness of -0.9837 and highly elevated kurtosis

measure of 22.9538.

In addition to modeling the CRSP returns with the SV-DPM, we also apply the

SV-N and SV-t models to them. Priors for the three SV models are the same as

those used in Section 6 for the simulated data examples. Like the simulated return

data, we first sweep over the latent volatilities 1000 times with the step-by-step

algorithm of Kim et al. (1998) before applying the full MCMC sampler. In each of

these initial 1000 sweeps the unknown volatilities are drawn conditional on a normal

return distribution and a fixed parameter vector equal to its starting value.

We increase the efficiency of the SV-DPM sampler and reduce the samplers total

computing time by respectively taking every tenth draw while running three inde-

pendent chains (consisting of 110,000 sweeps each) of the SV-DPM model’s sampler

simultaneously. To reduce the samplers dependency on the starting parameters and

the initialization of the volatilities, the first 1000 thinned draws of each chain are

discarded, leaving a total of 30,000 thinned draws for inference (10,000 from each

chain). Independence between the chains is ensured by using a different random

number generator for each chain. The three random number generators are the max-

imally equidistributed combined Tausworthe generator by L’Ecuyer (1999), a variant

of the twisted generalized feedback shift-register algorithm known as the Mersenne

Twister generator by Matsumoto & Nishimura (1998), and a lagged-fibonacci gen-

erator by Ziff (1998). More over, a different set of starting values is used with each

chain. One chain is initialized at δ = 0.9, σ2
v = 0.05 and h = 0, another with
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δ = 0.95, σ2
v = 0.02 and h = ln y2, and lastly, δ = 0.1, σ2

v = 0.01 and h = 1/(1 − δ).

Table 3 reports the MCMC sample means and standard deviations for the pa-

rameters of the SV-DPM, SV-t, and SV-N models. Similar to the estimates found

for the simulated return data in Section 6, the posterior estimate of the variance of

volatility parameter, σ2
v , is the smallest with the SV-DPM model. The posterior es-

timate of σ2
v is 0.0103 with a standard deviation of 0.0018. This mean and standard

deviation for σ2
v is substantially smaller than the SV-N models mean of 0.0276 and

standard deviation of 0.004. For the SV-N model this is to be expected, given that

the SV-N model requires a larger value of σ2
v in order to capture the excess kurtosis

found in the return data.

Excess kurtosis is still, however, unaccounted for by the SV-N return process

(Bakshi et al. (1997), Chib et al. (2002)). A better characterization of the kurtosis is

found in the SV-DPM and SV-t models where the distribution of the return process is

fit by a fat-tailed mixture of normals. Mixture models assign volatile time periods to

draws from the tail of the return distribution rather than to a more volatile volatility

process. As a result σ2
v in the SV-t model is smaller in value than in the SV-N

model, but slightly larger than the SV-DPM, with a mean and standard deviation

of 0.0154 and 0.0023. In Fig. 6 the posterior densities of σ2
v are consistent with these

observations. Notice the upper tail of the SV-DPM model’s density for σ2
v barely

overlaps with the lower tail of the SV-N model’s density, whereas there is considerable

overlap with the lower tail of the SV-t model.

Dynamic behavior in volatility as captured by the AR-parameter δ is nearly in-

distinguishable between the three SV models. First-order dynamics in the volatility

of the SV-DPM model is precisely estimated at 0.9887 with the tight posterior stan-

dard deviation of 0.0026. This estimate of δ is only slightly smaller than the SV-t

estimate of 0.9878, but with the same posterior standard deviation. The volatility in

the SV-N model reverts to its mean at a slightly faster pace with a posterior estimate

of δ equal to 0.9795.

For the daily portfolio return the average SV-DPM mixture order is k = 7.16.

This is noticeably larger than the average three clusters found for the simulated SV-
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t model data series.7 A larger k suggests that the SV-DPM not only captures the

daily stock returns leptokurtotic behavior, but its skewness too. Because of the SV-N

models symmetrical Gaussian innovations, it is unable to account for this asymmet-

rical behavior. Instead, it compensates for this skewness behavior by increasing its

level of volatility during those periods where volatile is highest.

This increase in the volatility of the SV-N and SV-t model relative to the SV-DPM

model is apparent in Figure 7 where the SV-DPM posterior conditional variance of

returns is plotted in Panel (a) and the SV-DPM models difference from the condi-

tional variances of the SV-N model are graphed in Panel (b) and the SV-t model in

Panel (c). During those periods where the SV-DPM models conditional daily vari-

ance is greater than 2, the SV-N conditional variance is on the order of 2 to 14 points

larger. The conditional variances of the SV-t model, while still greater than the SV-

DPM model, only range from approximately 1 to 4 points larger than the SV-DPM

variances. Even though there were differences found in the conditional variances of

Figure 1 for the three SV models estimate of the simulated data of Example 1, those

differences are small compared with those of Figure 7.

As for the behavior of skewness, because of their symmetrical distribution neither

the SV-N nor SV-t model is able to capture the skewness of daily returns. This is

borne out in the one day ahead, out of sample, predictive density plots of Figure 8.

The SV-DPM predictive density is clearly different from the SV-N or SV-t models.

For example, the SV-DPM predictive density is more centered around 0 and exhibits

the asymmetry associated with the negative skewness of returns. In addition, the

log-predictive densities plots of Figure 9 shows the SV-DPM producing fatter tails

than either of the SV-N or SV-t model.

7.1 Robustness to DP hyperparameters

Using the same empirical data set of CRSP portfolio returns we estimate the SV-

DPM model under five different prior specifications of π(α) ≡ Γ(a, b) and G0 ≡

7Note that this comparison is affected by sample size as k is increasing in the number of obser-
vations (Antoniak (1974)).
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N(m, (τλ2
t )

−1)−Γ(v0/2, s0/2) to test the robustness of the posterior estimates of the

SV-DPM model to different priors. Table 4 reports these robustness findings for the

posterior estimates of the SV-DPM model for the different priors.

To determine the impact the prior of the precision parameter has on the estimates

of the SV-DPM model we evaluate the model under the prior specification:

• Prior 2 : π(α) ∼ Γ(0.1, 20),

where E[α] = 0.005 and Var[α] = 0.00025, and leave the other priors exactly as before

(to review the complete list of of priors please see Section 6). These hyperparameter

values cause the prior distribution for α to be more tightly distributed and centered

closer to zero than did the original prior. As a result the posterior estimate of

α is found to be closer to zero at 0.1217. Since a smaller value for α lowers the

probability of selecting a new cluster from the Polya urn, under Prior 2 the estimate

of k is smaller at 4.4465. Though the mixture representation for the distribution of

returns now on average consists of fewer clusters, notice that the posterior estimates

of the volatility parameters, δ and σ2
v , and their standard deviations are nearly the

same as under the original prior. The only difference being the estimate of σ2
v is

slightly larger at 0.0112 with a standard deviation of 0.0019.

In the other four priors we allow the DP prior’s base distribution N(m, (τλ2
t )

−1)−

Γ(v0/2, s0/2) to change in order to explore how sensitive the posterior estimates of

the SV-DPM model are to prior’s mean and spread. The four priors are:

• Prior 3 : G0 ≡ N(0, (5 ∗ λ2)−1) − Γ(10/2, 10/2),
• Prior 4 : G0 ≡ N(0, (15 ∗ λ2)−1) − Γ(10/2, 10/2),
• Prior 5 : G0 ≡ N(0, (10 ∗ λ2)−1) − Γ(5/2, 5/2),
• Prior 6 : G0 ≡ N(0, (10 ∗ λ2)−1) − Γ(15/2, 15/2),

where Prior 3 & 4 change the variance of the mixture mean, η, and Prior 5 & 6

tests for the robustness to changes in the prior of the mixture variance, λ2. In the

posterior results reported in Table 4 neither of the changes in the hyperparameters

to η nor λ2 base distribution affect the posterior estimates of the SV-DPM model.

Under each of the four priors the estimates of δ are the same up to the third decimal

place at 0.978, and the estimates of σ2
v are equal out to the second decimal place at
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0.01. Subtle differences between the estimates of α can be found under the different

priors, with the posterior estimates α ranging from 0.4730 under Prior 4 to 0.4881

for the original prior. Similar results are found for k, where Prior 4 produces an

estimate of k = 6.9221, while k = 7.1644 for Prior 1.

7.2 Robustness to number of draws

Because the DPM sampler is a step-by-step algorithm, making 30,000 thinned draws

from the SV-DPM model requires a considerable number of computing cycles. This

is understandable given the level of inefficiency associated with the posterior draws

of the SV-DPM model. It would, however, be preferable if a fewer number of draws

could be used in making inference concerning the SV-DPM model. To determine if

this is possible, the SV-DPM model for the CRSP portfolio return data is reestimated

with a MCMC sample of 10,000 thinned draws. The posterior results of the SV-DPM

model from these 10,000 draws are reported in Table 5. The table also includes

the results from Table 3 where 30,000 draws were made. Notice that there is little

difference between the posterior means of the parameters. The volatility parameters,

δ and σ2
v , have comparable posterior means and exactly the same standard deviations.

The DP parameters α and k are also very similar.

8 Conclusion

This paper proposed a new Bayesian, semiparametric, autoregressive, stochastic

volatility model where the conditional return distribution is modeled nonparametri-

cally with an infinite ordered mixture of normal distributions. The unknown number

of mixture clusters, their probability of occurrence, and their mean and variance are

flexibly modeled a prior with a Dirichlet process prior. Conditional on a draw of the

log-volatilities, an efficient MCMC algorithm has been constructed to produce pos-

terior draws of the unknown number of mixture clusters and the clusters mean and

variance. The sampler has been stress tested against existing parametric stochastic

volatility models on simulated and real world daily return data. The semiparamet-
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ric stochastic volatility model performed well on both the simulated and empirical

return data, fitting both the negative skewness and leptokurtotic properties of re-

turns, while still capturing the time-varying conditional heteroskedastic dynamics

of returns. The semiparametric models increased flexibility and robustness to non-

Gaussian behavior and its superior forecasts makes it an appealing specification for

risk and portfolio managers.

Important questions remain to be answered with the Bayesian semiparametric,

stochastic volatility model. For instance, is it possible to attach structural meaning

to the mixture parameters, such as a particular mixture cluster being identified with

jumps in returns or to time periods where the economy is in a particular state of the

business cycle? Placing such structural meaning on the mixture clusters is possible

by assigning a prior rank ordering to the clusters within the Dirichlet process prior.

Doing so overcomes the label switching problem discussed earlier.

Another area of potential research is that of leverage effects. Leverage effects have

been used effectively with symmetrically distributed stochastic volatility models to

produce negative skewness in returns. A natural question one could ask is whether it

is possible to introduce leverage effects into this paper’s semiparametric, stochastic

volatility model. If so, how do leverage effects affect the skewness of the mixture

distribution. These and other interesting questions remain for future research.
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Table 1: Posterior estimates using the simulated return data of Example 1 where the
date is generated from a SV-t model (n = 1500).

true SV-DPM SV-t SV-N

mean stdev mean stdev mean stdev

µ 0.0 0.0153 0.0211 0.0151 0.0213
γ -0.01025 -0.0343 0.0123 -0.0310 0.0133
δ 0.95 0.9296 0.0217 0.9252 0.0206 0.9007 0.0262
σ2

v 0.04 0.0548 0.0218 0.0648 0.0214 0.1108 0.0314
ν 6.0 13.0150 10.0809
α 0.2789 0.1734
k 3.3243 1.6373

RMSE (Variance) 0.5607 0.5715 0.6364

SV-DPM: yt|φt, ht ∼ N(ηt, λ
−2

t exp(ht)), φt|G ∼ G, G|α, G0 ∼ DP (G0, α)

ht = δht−1 + σvvt, vt ∼ N(0, 1)

SV-t: yt = µ + exp(ht/2)zt, ht = γ + δht−1 + σvvt, zt ∼ tν(0, 1), vt ∼ N(0, 1)

SV-N: yt = µ + exp(ht/2)zt, ht = γ + δht−1 + σvvt, zt ∼ N(0, 1), vt ∼ N(0, 1)
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Table 2: Posterior estimates using the simulated return data of Example 2 where the
date is generated from a SV model whose distribution is a second ordered mixture
of normals (n = 1500).

true SV-DPM SV-t SV-N

mean stdev mean stdev mean stdev

µ 0.0 0.1493 0.0223 0.1462 0.0235
γ -0.020 -0.0584 0.0208 -0.1756 0.0576
δ 0.95 0.8864 0.0345 0.9076 0.0284 0.5049 0.1016
σ2

v 0.04 0.0455 0.0189 0.0744 0.0281 0.8131 0.1706
ν 3.9959 0.5764
α 0.2789 0.1623
k 3.2781 1.3300

RMSE (Variance) 0.5745 0.5822 0.9064

SV-DPM: yt|φt, ht ∼ N(ηt, λ
−2

t
exp(ht)), φt|G ∼ G, G|α, G0 ∼ DP (G0, α)

ht = δht−1 + σvvt, vt ∼ N(0, 1)

SV-t: yt = µ + exp(ht/2)zt, ht = γ + δht−1 + σvvt, zt ∼ tν(0, 1), vt ∼ N(0, 1)

SV-N: yt = µ + exp(ht/2)zt, ht = γ + δht−1 + σvvt, zt ∼ N(0, 1), vt ∼ N(0, 1)
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Table 3: Posterior estimates for daily returns of the CRSP value-weighted portfolio
from Jan 2, 1980 to Dec 29, 2006 (6815 observations, 30,000 thinned draws from three
independent chains of the SV-DPM sampling algorithm where every tenth draw is
retained and the first 1,000 thinned draws from each chain are discarded).

SV-DPM SV-t SV-N

mean stdev ineff mean stdev mean stdev

µ 0.0786 0.0084 0.0793 0.0086
γ -0.0087 0.0023 -0.0106 0.0028
δ 0.9877 0.0026 10.625 0.9878 0.0026 0.9795 0.0037
σ2

v 0.0103 0.0018 72.288 0.0154 0.0023 0.0276 0.0040
ν 9.9149 1.3035
α 0.4881 0.2357 28.474
k 7.1644 2.5996 57.765

ineff is the inefficiency factor.

SV-DPM: yt|φt, ht ∼ N(ηt, λ
−2

t exp(ht)), φt|G ∼ G, G|α, G0 ∼ DP (G0, α)

ht = δht−1 + σvvt, vt ∼ N(0, 1)

SV-t: yt = µ + exp(ht/2)zt, ht = γ + δht−1 + σvvt, zt ∼ tν(0, 1), vt ∼ N(0, 1)

SV-N: yt = µ + exp(ht/2)zt, ht = γ + δht−1 + σvvt, zt ∼ N(0, 1), vt ∼ N(0, 1)
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Table 4: Robust sensitivity analysis of the SV-DPM to different precision parameter
and base distribution priors for daily returns of the value-weighted CRSP portfolio
from Jan 2, 1980 to Dec 29, 2006 (6815 observations, 30,000 thinned draws from three
independent chains of the SV-DPM sampling algorithm where every tenth draw is
retained and the first 1,000 thinned draws from each chain are discarded).

Prior 2 Prior 3 Prior 4 Prior 5 Prior 6

δ 0.9877 0.9879 0.9877 0.9878 0.9876
(0.0026) (0.0026) (0.0026) (0.0026) (0.0027)

σ2
v 0.0112 0.0103 0.0104 0.0115 0.0100

(0.0019) (0.0017) (0.0018) (0.0019) (0.0023)
α 0.1217 0.4733 0.4730 0.4827 0.4837

(0.0080) (0.2300) (0.2278) (0.2253) (0.2490)
k 4.4465 6.9364 6.9221 7.0739 7.100

(1.3456) (2.4933) (2.4716) (2.3095) (2.9155)

The posterior mean and standard deviation (in parenthesis) are reported.

SV-DPM: yt|φt, ht ∼ N(ηt, λ
−2

t exp(ht)), φt|G ∼ G, G|α, G0 ∼ DP (G0, α)

ht = δht−1 + σvvt, vt ∼ N(0, 1)
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Table 5: Robust sensitivity analysis of the SV-DPM to the number of MCMC draws
for daily returns of the value-weighted CRSP portfolio from Jan 2, 1980 to Dec
29, 2006 (6815 observations). T thinned MCMC draws where every tenth draw is
retained and the first 1,000 thinned draws are discarded.

T 30,000 10,000
mean stdev ineff mean stdev ineff

δ 0.9877 0.0026 10.625 0.9878 0.0026 15.538
σ2

v 0.0103 0.0018 72.288 0.0102 0.0018 65.403
α 0.4881 0.2357 28.474 0.4961 0.2418 39.304
k 7.1644 2.5996 57.765 7.3002 2.7332 78.165

ineff is the inefficiency factor.

SV-DPM: yt|φt, ht ∼ N(ηt, λ
−2

t exp(ht)), φt|G ∼ G, G|α, G0 ∼ DP (G0, α)

ht = δht−1 + σvvt, vt ∼ N(0, 1)
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Figure 1: Posterior variance of returns, Var[Yt|y], for the simulated SV-t return data
of Example 1.
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Figure 2: Log-predictive densities, ln f(Yn+1|y), for simulated SV-t return data of
Example 1.
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Figure 3: Density of the second order mixture of normal distributions, f(zt) ≡
0.2fN(zt| −1.3791, 1.3112) + 0.8fN(zt|0.3448, 0.3278), used in simulating the return
data of Example 2.
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Figure 4: Predictive density, f(Yn+1|y), of the estimated SV-DPM, SV-N, and SV-t
model for the simulated data of Example 2.
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Figure 5: CRSP value-weighted portfolio index returns from Jan. 2, 1980 - Dec. 29,
2006 (n = 6815).
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Figure 6: Posterior density of σ2
v for the SV-DPM (solid line), SV-t (dashed-dot line),

and SV-N (dashed line) model as applied to the value-weighted CRSP portfolio daily
return data.
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Figure 7: The SV-DPM posterior variance of returns, Var[Yt|y], for the value-
weighted CRSP index returns (Panel a), and its difference from the SV-N (Panel
b) and SV-t (Panel c) model.
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Figure 8: Predictive density, f(Yn+1|y), of the SV-DPM, SV-N, and SV-t model for
the value-weighted CRSP portfolio daily return.
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Figure 9: Log-predictive density, ln f(Yn+1|y), of the SV-DPM, SV-N, and SV-t
model for the value-weighted CRSP portfolio daily return.
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